# HG changeset patch
# User František Kučera <franta-hg@frantovo.cz>
# Date 1497179518 -7200
# Node ID 6b5c6a26693ffb12d885be06f282c1ee9b3186ed
# Parent  514b9b433dc293f854c790d273dfff3e8f9014a9
lpt-signal-generator: odsazení: mezery → tabulátory

diff -r 514b9b433dc2 -r 6b5c6a26693f c++/lpt-signal-generator/lpt.cpp
--- a/c++/lpt-signal-generator/lpt.cpp	Sun Jun 11 13:07:53 2017 +0200
+++ b/c++/lpt-signal-generator/lpt.cpp	Sun Jun 11 13:11:58 2017 +0200
@@ -51,121 +51,121 @@
  * mode info: https://blog.frantovo.cz/c/358/Paraleln%C3%AD%20port%20jako%20gener%C3%A1tor%20sign%C3%A1lu
  */
 int main() {
-  //cout << "LPT!" << endl; // same as using printf → breaks all folllowing wprintf() calls, see note above
+	//cout << "LPT!" << endl; // same as using printf → breaks all folllowing wprintf() calls, see note above
 
-  /*
-   * if setlocale() is missing, unicode characters are replaced with ? or „→“ with „->“ because C/POSIX locale is used, 
-   * see man setlocale:
-   * > On startup of the main program, the portable "C" locale is selected as default.
-   * > If locale is an empty string, "", each part of the locale that should be modified is set according to the environment variables.
-   */
-  setlocale(LC_ALL,"");
+	/*
+	 * if setlocale() is missing, unicode characters are replaced with ? or „→“ with „->“ because C/POSIX locale is used, 
+	 * see man setlocale:
+	 * > On startup of the main program, the portable "C" locale is selected as default.
+	 * > If locale is an empty string, "", each part of the locale that should be modified is set according to the environment variables.
+	 */
+	setlocale(LC_ALL,"");
 
 
-  // configuration ----
-  int addr = 0xe400; // parallel port address; first number of given port in: cat /proc/ioports | grep parport
-  int baseFreq = 10000; // base frequency in Hz, should be between 5 000 between 10 000 Hz; lower frequency leads to dashed/dotted lines instead of greyscale
-  int outputPower = 20; // duty cycle; 100 = 100 %
-  int duration = 1; // in seconds; total sleep time, see note above
-  // ------------------
+	// configuration ----
+	int addr = 0xe400; // parallel port address; first number of given port in: cat /proc/ioports | grep parport
+	int baseFreq = 10000; // base frequency in Hz, should be between 5 000 between 10 000 Hz; lower frequency leads to dashed/dotted lines instead of greyscale
+	int outputPower = 20; // duty cycle; 100 = 100 %
+	int duration = 1; // in seconds; total sleep time, see note above
+	// ------------------
 
 
-  int valueWidth =  10; // just for padding of printed values
-  int labelWidth = -15; // just for padding of printed labels
+	int valueWidth =  10; // just for padding of printed values
+	int labelWidth = -15; // just for padding of printed labels
 
-  // ' = thousand separator
-  // * = padding
-  wprintf(L"%*ls %*x\n", labelWidth, L"Parallel port:", valueWidth, addr); // or %#*x – adds 0x prefix
-  wprintf(L"%*ls %'*d Hz\n", labelWidth, L"Base frequency:", valueWidth, baseFreq);
-  wprintf(L"%*ls %*d %% duty cycle\n",  labelWidth, L"Output power:", valueWidth, outputPower);
-  wprintf(L"%*ls %'*d s\n", labelWidth, L"Duration:", valueWidth, duration);
+	// ' = thousand separator
+	// * = padding
+	wprintf(L"%*ls %*x\n", labelWidth, L"Parallel port:", valueWidth, addr); // or %#*x – adds 0x prefix
+	wprintf(L"%*ls %'*d Hz\n", labelWidth, L"Base frequency:", valueWidth, baseFreq);
+	wprintf(L"%*ls %*d %% duty cycle\n",  labelWidth, L"Output power:", valueWidth, outputPower);
+	wprintf(L"%*ls %'*d s\n", labelWidth, L"Duration:", valueWidth, duration);
 
-  // in microseconds:
-  auto oneSecond = 1000 * 1000;
-  auto timeOn =  oneSecond *        outputPower  / 100 / baseFreq;
-  auto timeOff = oneSecond * (100 - outputPower) / 100 / baseFreq;
+	// in microseconds:
+	auto oneSecond = 1000 * 1000;
+	auto timeOn =  oneSecond *        outputPower  / 100 / baseFreq;
+	auto timeOff = oneSecond * (100 - outputPower) / 100 / baseFreq;
 
-  auto cycleCount = duration * baseFreq;
-  wprintf(L"%*ls %'*d ×\n", labelWidth, L"Cycle count:", valueWidth, cycleCount);
-  wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time on:",  valueWidth, timeOn);
-  wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time off:", valueWidth, timeOff);
+	auto cycleCount = duration * baseFreq;
+	wprintf(L"%*ls %'*d ×\n", labelWidth, L"Cycle count:", valueWidth, cycleCount);
+	wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time on:",  valueWidth, timeOn);
+	wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time off:", valueWidth, timeOff);
 
-  //wprintf(L"%*ls %*ls\n", labelWidth, L"unicode test:", valueWidth, L"čeština → …");
+	//wprintf(L"%*ls %*ls\n", labelWidth, L"unicode test:", valueWidth, L"čeština → …");
 
-  wprintf(L"\n");
+	wprintf(L"\n");
 
-  // TODO: test whether this address is an parallel port
-  if (ioperm(addr,1,1)) { fwprintf(stderr, L"Access denied to port %#x\n", addr), exit(1); }
+	// TODO: test whether this address is an parallel port
+	if (ioperm(addr,1,1)) { fwprintf(stderr, L"Access denied to port %#x\n", addr), exit(1); }
 
 
-  // calibration
-  auto startTimestamp = chrono::high_resolution_clock::now();
-  auto calibrationCycles = 10000;
-  auto calibrationSleepTime = 10;
+	// calibration
+	auto startTimestamp = chrono::high_resolution_clock::now();
+	auto calibrationCycles = 10000;
+	auto calibrationSleepTime = 10;
 
-  for (auto i = calibrationCycles; i > 0; i--) {
-    outb(0b00000000, addr);
-    usleep(calibrationSleepTime);
-    outb(0b00000000, addr);
-    usleep(calibrationSleepTime);
-  }
+	for (auto i = calibrationCycles; i > 0; i--) {
+		outb(0b00000000, addr);
+		usleep(calibrationSleepTime);
+		outb(0b00000000, addr);
+		usleep(calibrationSleepTime);
+	}
 
-  auto finishTimestamp = chrono::high_resolution_clock::now();
-  auto measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
+	auto finishTimestamp = chrono::high_resolution_clock::now();
+	auto measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
 
-  auto singleOutbCostNano = (measuredDuration - calibrationCycles*2*calibrationSleepTime*1000)/calibrationCycles/2;
-  auto singleOutbCostMicro = singleOutbCostNano/1000;
+	auto singleOutbCostNano = (measuredDuration - calibrationCycles*2*calibrationSleepTime*1000)/calibrationCycles/2;
+	auto singleOutbCostMicro = singleOutbCostNano/1000;
 
-  wprintf(L"%*ls %'*d μs 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostMicro);
-  wprintf(L"%*ls %'*d ns 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostNano);
+	wprintf(L"%*ls %'*d μs 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostMicro);
+	wprintf(L"%*ls %'*d ns 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostNano);
 
-  auto minPower = 100*singleOutbCostNano/(1000*1000*1000/baseFreq);
-  auto maxPower = 100-minPower;
-  wprintf(L"%*ls %*d %% feasible duty cycle\n",  labelWidth, L"Minimum power:", valueWidth, minPower);
-  wprintf(L"%*ls %*d %% feasible duty cycle\n",  labelWidth, L"Maximum power:", valueWidth, maxPower);
+	auto minPower = 100*singleOutbCostNano/(1000*1000*1000/baseFreq);
+	auto maxPower = 100-minPower;
+	wprintf(L"%*ls %*d %% feasible duty cycle\n",  labelWidth, L"Minimum power:", valueWidth, minPower);
+	wprintf(L"%*ls %*d %% feasible duty cycle\n",  labelWidth, L"Maximum power:", valueWidth, maxPower);
 
-  if (singleOutbCostMicro < timeOn && singleOutbCostMicro < timeOff) {
-    wprintf(L"%*ls %*ls both frequency and duty cycle should be correct\n",  labelWidth, L"Calibration:", valueWidth, L"OK");
-    timeOn  -= singleOutbCostMicro;
-    timeOff -= singleOutbCostMicro;
-  } else if (2*singleOutbCostMicro < (timeOn + timeOff)) {
-    wprintf(L"%*ls %*ls frequency should be OK, but duty cycle is not feasible\n",  labelWidth, L"Calibration:", valueWidth, L"WARNING");
-    timeOn  -= singleOutbCostMicro;
-    timeOff -= singleOutbCostMicro;
+	if (singleOutbCostMicro < timeOn && singleOutbCostMicro < timeOff) {
+		wprintf(L"%*ls %*ls both frequency and duty cycle should be correct\n",  labelWidth, L"Calibration:", valueWidth, L"OK");
+		timeOn  -= singleOutbCostMicro;
+		timeOff -= singleOutbCostMicro;
+	} else if (2*singleOutbCostMicro < (timeOn + timeOff)) {
+		wprintf(L"%*ls %*ls frequency should be OK, but duty cycle is not feasible\n",  labelWidth, L"Calibration:", valueWidth, L"WARNING");
+		timeOn  -= singleOutbCostMicro;
+		timeOff -= singleOutbCostMicro;
 
-    if (timeOn < 0) {
-      timeOff -= timeOn;
-      timeOn = 0;
-    } else {
-      timeOn -= timeOff;
-      timeOff = 0;
-    }
-  } else {
-    wprintf(L"%*ls %*ls both frequency and duty cycle are not feasible\n",  labelWidth, L"Calibration:", valueWidth, L"ERROR");
-    timeOn  = 0;
-    timeOff = 0;
-  }
+		if (timeOn < 0) {
+			timeOff -= timeOn;
+			timeOn = 0;
+		} else {
+			timeOn -= timeOff;
+			timeOff = 0;
+		}
+	} else {
+		wprintf(L"%*ls %*ls both frequency and duty cycle are not feasible\n",  labelWidth, L"Calibration:", valueWidth, L"ERROR");
+		timeOn  = 0;
+		timeOff = 0;
+	}
 
-  wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep on:",  valueWidth, timeOn);
-  wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep off:", valueWidth, timeOff);
+	wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep on:",  valueWidth, timeOn);
+	wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep off:", valueWidth, timeOff);
 
-  wprintf(L"\n");
+	wprintf(L"\n");
 
 
-  // actual signal generation
-  startTimestamp = chrono::high_resolution_clock::now();
+	// actual signal generation
+	startTimestamp = chrono::high_resolution_clock::now();
 
-  for (auto i = cycleCount; i > 0;  i--) {
-    outb(0b00000001, addr); // first data out pin = data out 0 = pin 2 on DB-25 connector
-    usleep(timeOn);
-    outb(0b00000000, addr);
-    usleep(timeOff);
-  }
+	for (auto i = cycleCount; i > 0;  i--) {
+		outb(0b00000001, addr); // first data out pin = data out 0 = pin 2 on DB-25 connector
+		usleep(timeOn);
+		outb(0b00000000, addr);
+		usleep(timeOff);
+	}
 
-  finishTimestamp = chrono::high_resolution_clock::now();
-  measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
+	finishTimestamp = chrono::high_resolution_clock::now();
+	measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
 
-  wprintf(L"%*ls %'*d μs in total\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/1000);
-  wprintf(L"%*ls %'*d ns in each cycle\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount);
+	wprintf(L"%*ls %'*d μs in total\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/1000);
+	wprintf(L"%*ls %'*d ns in each cycle\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount);
 
 }