1.1 --- a/c++/lpt-signal-generator/lpt.cpp Sun Jun 11 01:25:56 2017 +0200
1.2 +++ b/c++/lpt-signal-generator/lpt.cpp Sun Jun 11 03:05:27 2017 +0200
1.3 @@ -54,10 +54,14 @@
1.4 */
1.5 setlocale(LC_ALL,"");
1.6
1.7 +
1.8 + // configuration ----
1.9 int addr = 0xe400; // parallel port address; first number of given port in: cat /proc/ioports | grep parport
1.10 int baseFreq = 10000; // base frequency in Hz, should be between 5 000 between 10 000 Hz; lower frequency leads to dashed/dotted lines instead of greyscale
1.11 int outputPower = 20; // duty cycle; 100 = 100 %
1.12 int duration = 1; // in seconds; total sleep time, see note above
1.13 + // ------------------
1.14 +
1.15
1.16 int valueWidth = 10; // just for padding of printed values
1.17 int labelWidth = -15; // just for padding of printed labels
1.18 @@ -74,9 +78,6 @@
1.19 int timeOn = oneSecond * outputPower / 100 / baseFreq;
1.20 int timeOff = oneSecond * (100 - outputPower) / 100 / baseFreq;
1.21
1.22 - timeOn -= 13;
1.23 - timeOff -= 13;
1.24 -
1.25 int cycleCount = duration * baseFreq;
1.26 wprintf(L"%*ls %'*d ×\n", labelWidth, L"Cycle count:", valueWidth, cycleCount);
1.27 wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time on:", valueWidth, timeOn);
1.28 @@ -84,12 +85,67 @@
1.29
1.30 //wprintf(L"%*ls %*ls\n", labelWidth, L"unicode test:", valueWidth, L"čeština → …");
1.31
1.32 + wprintf(L"\n");
1.33
1.34 if (ioperm(addr,1,1)) { fwprintf(stderr, L"Access denied to port %#x\n", addr), exit(1); }
1.35
1.36 - outb(0b00000000, addr);
1.37
1.38 + // calibration
1.39 auto startTimestamp = chrono::high_resolution_clock::now();
1.40 + auto calibrationCycles = 10000;
1.41 + auto calibrationSleepTime = 10;
1.42 +
1.43 + for (int i = 0; i < calibrationCycles; i++) {
1.44 + outb(0b00000000, addr);
1.45 + usleep(calibrationSleepTime);
1.46 + outb(0b00000000, addr);
1.47 + usleep(calibrationSleepTime);
1.48 + }
1.49 +
1.50 + auto finishTimestamp = chrono::high_resolution_clock::now();
1.51 + auto measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
1.52 +
1.53 + auto singleOutbCostNano = (measuredDuration - calibrationCycles*2*calibrationSleepTime*1000)/calibrationCycles/2;
1.54 + auto singleOutbCostMicro = singleOutbCostNano/1000;
1.55 +
1.56 + wprintf(L"%*ls %'*d μs 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostMicro);
1.57 + wprintf(L"%*ls %'*d ns 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostNano);
1.58 +
1.59 + auto minPower = 100*singleOutbCostNano/(1000*1000*1000/baseFreq);
1.60 + auto maxPower = 100-minPower;
1.61 + wprintf(L"%*ls %*d %% feasible duty cycle\n", labelWidth, L"Minimum power:", valueWidth, minPower);
1.62 + wprintf(L"%*ls %*d %% feasible duty cycle\n", labelWidth, L"Maximum power:", valueWidth, maxPower);
1.63 +
1.64 + if (singleOutbCostMicro < timeOn && singleOutbCostMicro < timeOff) {
1.65 + wprintf(L"%*ls %*ls both frequency and duty cycle should be correct\n", labelWidth, L"Calibration:", valueWidth, L"OK");
1.66 + timeOn -= singleOutbCostMicro;
1.67 + timeOff -= singleOutbCostMicro;
1.68 + } else if (2*singleOutbCostMicro < (timeOn + timeOff)) {
1.69 + wprintf(L"%*ls %*ls frequency should be OK, but duty cycle is not feasible\n", labelWidth, L"Calibration:", valueWidth, L"WARNING");
1.70 + timeOn -= singleOutbCostMicro;
1.71 + timeOff -= singleOutbCostMicro;
1.72 +
1.73 + if (timeOn < 0) {
1.74 + timeOff -= timeOn;
1.75 + timeOn = 0;
1.76 + } else {
1.77 + timeOn -= timeOff;
1.78 + timeOff = 0;
1.79 + }
1.80 + } else {
1.81 + wprintf(L"%*ls %*ls both frequency and duty cycle are not feasible\n", labelWidth, L"Calibration:", valueWidth, L"ERROR");
1.82 + timeOn = 0;
1.83 + timeOff = 0;
1.84 + }
1.85 +
1.86 + wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep on:", valueWidth, timeOn);
1.87 + wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep off:", valueWidth, timeOff);
1.88 +
1.89 + wprintf(L"\n");
1.90 +
1.91 +
1.92 + // actual signal generation
1.93 + startTimestamp = chrono::high_resolution_clock::now();
1.94
1.95 for (int i = 0; i < cycleCount; i++) {
1.96 outb(0b00000001, addr); // first data out pin = data out 0 = pin 2 on DB-25 connector
1.97 @@ -98,10 +154,10 @@
1.98 usleep(timeOff);
1.99 }
1.100
1.101 - auto finishTimestamp = chrono::high_resolution_clock::now();
1.102 - auto measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
1.103 + finishTimestamp = chrono::high_resolution_clock::now();
1.104 + measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
1.105
1.106 - wprintf(L"%*ls %'*d μs 2× in each cycle\n", labelWidth, L"single outb():", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount/2/1000);
1.107 - wprintf(L"%*ls %'*d ns 2× in each cycle\n", labelWidth, L"single outb():", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount/2);
1.108 + wprintf(L"%*ls %'*d μs in total\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/1000);
1.109 + wprintf(L"%*ls %'*d ns in each cycle\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount);
1.110
1.111 }