3 * Copyright © 2017 František Kučera (frantovo.cz)
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
25 #include <chrono> // requires -std=c++11
28 * can not mix printf and wprintf
29 * see https://stackoverflow.com/questions/8681623/printf-and-wprintf-in-single-c-code
30 * > This is to be expected; your code is invoking undefined behavior.
31 * > Per the C standard, each FILE stream has associated with it an "orientation" (either "byte" or "wide)
32 * > which is set by the first operation performed on it, and which can be inspected with the fwide function.
33 * > Calling any function whose orientation conflicts with the orientation of the stream results in undefined behavior.
41 // TODO: data types revision
42 // TODO: time units s, μs, ns – naming convention / unification
45 * generates square wave signal on a parallel port pin with given frequency and duty cycle
46 * mode info: https://blog.frantovo.cz/c/358/Paraleln%C3%AD%20port%20jako%20gener%C3%A1tor%20sign%C3%A1lu
49 //cout << "LPT!" << endl; // same as using printf → breaks all folllowing wprintf() calls, see note above
52 * if setlocale() is missing, unicode characters are replaced with ? or „→“ with „->“ because C/POSIX locale is used,
54 * > On startup of the main program, the portable "C" locale is selected as default.
55 * > If locale is an empty string, "", each part of the locale that should be modified is set according to the environment variables.
61 int addr = 0xe400; // parallel port address; first number of given port in: cat /proc/ioports | grep parport
62 int baseFreq = 10000; // base frequency in Hz, should be between 5 000 between 10 000 Hz; lower frequency leads to dashed/dotted lines instead of greyscale
63 int outputPower = 20; // duty cycle; 100 = 100 %
64 int duration = 1; // in seconds; total sleep time, see note above
68 int valueWidth = 10; // just for padding of printed values
69 int labelWidth = -15; // just for padding of printed labels
71 // ' = thousand separator
73 wprintf(L"%*ls %*x\n", labelWidth, L"Parallel port:", valueWidth, addr); // or %#*x – adds 0x prefix
74 wprintf(L"%*ls %'*d Hz\n", labelWidth, L"Base frequency:", valueWidth, baseFreq);
75 wprintf(L"%*ls %*d %% duty cycle\n", labelWidth, L"Output power:", valueWidth, outputPower);
76 wprintf(L"%*ls %'*d s\n", labelWidth, L"Duration:", valueWidth, duration);
79 auto oneSecond = 1000 * 1000;
80 auto timeOn = oneSecond * outputPower / 100 / baseFreq;
81 auto timeOff = oneSecond * (100 - outputPower) / 100 / baseFreq;
83 auto cycleCount = duration * baseFreq;
84 wprintf(L"%*ls %'*d ×\n", labelWidth, L"Cycle count:", valueWidth, cycleCount);
85 wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time on:", valueWidth, timeOn);
86 wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Time off:", valueWidth, timeOff);
88 //wprintf(L"%*ls %*ls\n", labelWidth, L"unicode test:", valueWidth, L"čeština → …");
92 // TODO: test whether this address is an parallel port
93 if (ioperm(addr,1,1)) { fwprintf(stderr, L"Access denied to port %#x\n", addr), exit(1); }
97 auto startTimestamp = chrono::high_resolution_clock::now();
98 auto calibrationCycles = 10000;
99 auto calibrationSleepTime = 10;
101 for (auto i = calibrationCycles; i > 0; i--) {
102 outb(0b00000000, addr);
103 usleep(calibrationSleepTime);
104 outb(0b00000000, addr);
105 usleep(calibrationSleepTime);
108 auto finishTimestamp = chrono::high_resolution_clock::now();
109 auto measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
111 auto singleOutbCostNano = (measuredDuration - calibrationCycles*2*calibrationSleepTime*1000)/calibrationCycles/2;
112 auto singleOutbCostMicro = singleOutbCostNano/1000;
114 wprintf(L"%*ls %'*d μs 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostMicro);
115 wprintf(L"%*ls %'*d ns 2× in each calibration cycle\n", labelWidth, L"Single outb():", valueWidth, singleOutbCostNano);
117 auto minPower = 100*singleOutbCostNano/(1000*1000*1000/baseFreq);
118 auto maxPower = 100-minPower;
119 wprintf(L"%*ls %*d %% feasible duty cycle\n", labelWidth, L"Minimum power:", valueWidth, minPower);
120 wprintf(L"%*ls %*d %% feasible duty cycle\n", labelWidth, L"Maximum power:", valueWidth, maxPower);
122 if (singleOutbCostMicro < timeOn && singleOutbCostMicro < timeOff) {
123 wprintf(L"%*ls %*ls both frequency and duty cycle should be correct\n", labelWidth, L"Calibration:", valueWidth, L"OK");
124 timeOn -= singleOutbCostMicro;
125 timeOff -= singleOutbCostMicro;
126 } else if (2*singleOutbCostMicro < (timeOn + timeOff)) {
127 wprintf(L"%*ls %*ls frequency should be OK, but duty cycle is not feasible\n", labelWidth, L"Calibration:", valueWidth, L"WARNING");
128 timeOn -= singleOutbCostMicro;
129 timeOff -= singleOutbCostMicro;
139 wprintf(L"%*ls %*ls both frequency and duty cycle are not feasible\n", labelWidth, L"Calibration:", valueWidth, L"ERROR");
144 wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep on:", valueWidth, timeOn);
145 wprintf(L"%*ls %'*d μs 1× in each cycle\n", labelWidth, L"Sleep off:", valueWidth, timeOff);
150 // actual signal generation
151 startTimestamp = chrono::high_resolution_clock::now();
153 for (auto i = cycleCount; i > 0; i--) {
154 outb(0b00000001, addr); // first data out pin = data out 0 = pin 2 on DB-25 connector
156 outb(0b00000000, addr);
160 finishTimestamp = chrono::high_resolution_clock::now();
161 measuredDuration = chrono::duration_cast<chrono::nanoseconds>(finishTimestamp - startTimestamp).count();
163 wprintf(L"%*ls %'*d μs in total\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/1000);
164 wprintf(L"%*ls %'*d ns in each cycle\n", labelWidth, L"Deviation:", valueWidth, (measuredDuration-duration*oneSecond*1000)/cycleCount);